
Abstract

This is an introduction to more advanced topics in number theory suitable for
an advanced Grade 4 audience. These notes were prepared for the Grand River
Chinese School. The content covered is not typically presented to elementary
school students. It is hard and designed to challenge even the strongest students,
while being accessible for everyone. Each chapter (excluding the introduction)
may take two to four hours to deliver entirely, depending on the level of detail.

These notes are intended to be a rough outline of what is taught, and not
a rigorous and complete reference. I do not necessarily cover all the material
written in these notes in any particular year. In particular, the more abstract
algebraic concepts are often abbreviated or left out, and are included for com-
pleteness. I may occasionally cover material beyond that written in the notes.

Although the notes are intended to be presented to a young audience, they
are written for a teacher and not for a student. Many of the terms used will not
be familiar to the students. They require explanation.
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Chapter 1

The Integers

Number Theory is the study of integers and problems based on the integers.
Firstly, what is an integer? We are familiar with the whole numbers, which can
be drawn on the number line (see Figure 1.1). The whole numbers begin with
0 and continue 1, 2, 3, and so on.

We may now add in the negative numbers, −1, −2, −3, and so on. If these
numbers are considered together with the whole numbers, then we have a full
number line that contains all the integers (see Figure 1.2). For most of this
unit, we will work with positive integers only, which start at 1 and continue 2,
3, 4, and so on. Note, in particular, that 0 is neither a positive integer nor a
negative integer.

What can we do with integers? Some common operations that we are fa-
miliar with are +, −, ×, and ÷. We are already familiar with how to compute
these operations on integers. That will not be the focus of this class. Instead,
we will investigate these operations and their properties in more detail.

1.1 Addition with Negative Integers

Each integer has a so-called additive inverse. This is the number on the opposite
side of the number line; that is, if you reflect the number across 0. For example,
the additive inverse of 2 is −2, and the additive inverse of −2 is 2. For an integer
a, we can use −a to denote its additive inverse.

Example 1a. Additive inverse of 0

What is the additive inverse of 0?

Solution: Because it is in the middle of the number line, 0 is its own
arithmetic inverse. That is, −0 = 0.

If a number is added to its own additive inverse, the result is 0. In other
words, for any integer a,

a+ (−a) = 0 (1.1)

0 1 2 3 4 5 6 7 8

Figure 1.1: The whole numbers on a number line
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−4 −3 −2 −1 0 1 2 3 4

Figure 1.2: The integers on a number line

which is where the name “additive inverse” comes from.
We all know how to add whole numbers. Adding integers, including negative

numbers, is a little trickier. A useful way to remember addition is that it involves
moving to the left or right on the number line.

When we add a positive number, we move to the right on the number line.
For example, we can compute 4+2 by starting at 4, then moving two spaces to
the right, ending at 6.

When we add a negative number, we move to the left on the number line.
We can compute 4 + (−2) by starting at 4, then moving two spaces to the left,
ending at 2.

1.2 Subtraction with Negative Integers

Subtraction is about reversing addition. What 8−3 means is, roughly speaking,
“what number must be added to 3 to make 8”? When we write 8− 3 = 5, this
means the same thing as 3 + 5 = 8: the number 5 must be added to 3 to make
8.

It turns out that for integers, we can calculate subtraction the same way as
the addition of a number’s additive inverse. That is, for a and b integers:

a− b = a+ (−b) (1.2)

In the example above, we can calculate 8 − 3 = 8 + (−3), and then apply
the same number line rule as with addition. That is, we move three spaces to
the left of the 8 on the number line, getting 5.

Since we are usually more familiar with adding and subtracting whole num-
bers than negative numbers, it is convenient to rewrite sums and differences
involving negative numbers using the rule 1.2 above. Consider the following
examples.

Example 1b. Sums and Differences

Compute each sum or difference.

• 1 + (−4)

• 1− (−4)

Solution:

• For 1+(−4), we start at 1 and move 4 spaces to the left on the number

line, reaching −3. So 1 + (−4) = −3 .

• For 1− (−4), we use the rule discussed above to rewrite this as a sum.

Since 4 is the additive inverse of −4, we have 1− (−4) = 1 + 4 = 5 .
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Number Theory 5

1.3 Multiplication & Division

Many of the topics in number theory are based off the operations of multiplica-
tion and division. Consider a multiplication expression, such as

7× 9 = 63

In this expression, 7 is the multiplicand, 9 is the multiplier, and 63 is the
product. An important property of multiplication is that it is commutative,
which means we may switch the order. That is,

9× 7 = 7× 9

Before we continue, it is important to have a good grasp of what remain-
ders are, and to introduce some new notation. Recall first that division is the
operation of repeated subtraction, like how multiplication is the operation of
repeated addition.

When we divide 20 by 4, we count how many groups of 4 are needed to make
20. We know that 4 × 5 = 20. This means that it takes 5 groups of 4 to make
20. So 20÷ 4 = 5.

Sometimes the numbers might not work out perfectly. Let’s try dividing 20
by 3. If we make 7 groups of 3, the total number would be 3× 7 = 21. But this
is too big. If we make 6 groups of 3, the total number would be 3×6 = 18. But
this is too small. So we can make six groups, but we’d then have 20 − 18 = 2
left over.

We say that when we divide 20 by 3, our quotient is 6 because we can make
6 groups of 3 in total. And then we say that our remainder is 2 because after
making 6 groups of 3, we have 2 left over. We can also write this as 20÷3 = 6R2.
The “R” stands for “remainder”.

Suppose we didn’t care what the quotient was; only the remainder is impor-
tant. Then we can write that as 16 mod 5 = 1. We don’t care how many groups
we made, but we do care that one was left over after making those groups.

The study of remainders is very useful for several major applications, some of
which we will see later this unit. Recalling the patterning unit, we used remain-
ders to compute future terms in repeating sequences. Many of the applications
of remainders are based off this application.

Example 1c. Guess the Number

A number yields a remainder of 1 when divided by 2, a remainder of 2 when
divided by 3, a remainder of 3 when divided by 4, and a remainder of 4
when divided by 5.

a. What is the smallest positive number to have this property?

b. Give two other positive numbers to have the above property.

Solution:

a. The important pattern to see here is that each remainder is one
less than the number being divided by: 1 = 2 − 1, 2 = 3 − 1,
and so forth. That means that if we add one to a number that
has this property, then it should be divisible by all of 2, 3, 4, and
5. The smallest positive number divisible by all of these is 60, so
60− 1 = 59 is the smallest positive number having the property.
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Number Theory 6

b. As seen in the solution to part a., any number having the property
is one less than a number divisible by 2, 3, 4, and 5. Other numbers
that work therefore include 120− 1 = 119 and 180− 1 = 179 .

Grade 4 Olympic Math



Chapter 2

Parity & Divisibility

2.1 Parity

Parity is a property of integers that classifies integers into even integers and odd
integers. In this section, we will study the differences between even and odd
integers, and also study several important properties. We will also approach the
problem algebraically. Do not be alarmed by the presence of letters along with
numbers. Unless otherwise stated, a letter is simply a placeholder for a number.

An even number is a number of the form 2n, where n is any integer. The
expression 2n means 2×n; we omit the × so that it is faster to read and write.
What are some examples? For instance, 6 is an even number, because we can
write 6 = 2× 3.

Is 2 even? Yes. We can write 2 = 2× 1, so 2 is an even number. Is 0 even?
Yes. We can write 0 = 2 × 0, so 0 is also an even number. What about −10?
This is also an even number, because we can write −10 = 2×−5.

Now let’s consider 5. Can we find an integer n so that 5 = 2n? The answer
is no. If we try n = 2, we get 2× 2 = 4, which is too small. But if we try n = 3,
we get 2× 3 = 6, which is too big. Since there are no integers between 2 and 3,
the conclusion is that there is no integer n with 5 = 2n.

Then, 5 is not even. We say that 5 is odd: that simply means that it is not
even. All integers, then, are either even or odd, never neither and never both.

The numbers −4, −2, 0, 2, and 4 are even, while the numbers −3, −1, 1, and
3 are odd. Notice that in between every two even numbers is an odd number,
and in between every two odd numbers is an even number. Indeed, if we add 1
to an even number, we will always get an odd number; if we add 1 to an odd
number, we will always get an even number.

Furthermore, any odd number is exactly 1 more than some even number.
What we conclude is that any odd number can be written as 2n + 1, where n
is some integer. In addition, any integer of the form 2n + 1, where n is some
integer, is odd. (The expression 2n + 1 means (2 × n) + 1. We perform the
multiplication first because of the order of operations.)

2.1.1 Determining Parity

It is easy to determine whether a number is even or odd. Let’s start with small
examples first. We know 4 = 2 × 2, so it’s even. We know 7 = 2 × 3 + 1, so
it’s odd. A number is either even or odd, but it’s never both. We only need to
divide by 2: if it evenly divides, then it’s even, and otherwise, it’s odd.
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+ Even Odd

Even Even Odd

Odd Odd Even

Figure 2.1: Result of adding numbers, by parity

Example 2a. Odd or Even I

Are each of the following numbers even or odd?

• 10 Even Odd

• 0 Even Odd

• 19 Even Odd

• −1 Even Odd

If the numbers are very big, it is convenient to simply observe the last digit.
If the last digit is even, then the whole number is even. If the last digit is odd,
then the whole number is odd. Why does this work? We will see very soon.

2.1.2 Sums & Differences

What happens if we add two odd numbers? Two even numbers? Let’s find
out. Say 2n + 1 and 2m + 1 are two odd numbers. We’re using letters here as
placeholders; n and m can both take the value of any integer. Then

(2n+ 1) + (2m+ 1) = 2n+ 2m+ 1 + 1 = 2n+ 2m+ 2 = 2(n+m+ 1)

but n+m+ 1 is an integer, and therefore the sum is even.
We can use a very similar strategy to find the sum of two even numbers.

This is even easier. Say 2n and 2m are two even numbers. Then

2n+ 2m = 2(n+m)

but n+m is an integer, and therefore the sum is even.
Say 2n is an even number, and 2m+ 1 is an odd number. Then

2n+ 2m+ 1 = 2(n+m) + 1

which is an odd number. So the sum of an even number and an odd number is
odd. And because we can rearrange the order of addition, therefore the sum of
an odd number and a even number is also odd. These results can be summarized
in a table (see Figure 2.1).

The rules for subtracting are exactly the same. The difference of two odds is
even. The difference of two evens is even. The difference of an odd and an even
is odd. These results are summarized in Figure 2.2. Feel free to work these out
yourself.
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− Even Odd

Even Even Odd

Odd Odd Even

Figure 2.2: Result of subtracting numbers, by parity

× Even Odd

Even Even Even

Odd Even Odd

Figure 2.3: Result of multiplying numbers, by parity

Example 2b. Odd or Even II

Are each of the following numbers even or odd?

• 100 + 200 Even Odd

• 1273 + 19023 Even Odd

• 19082− 1911 Even Odd

• 109291 + 8329 + 9107 Even Odd

2.1.3 Products

We can use a similar technique to develop rules for the product of even and odd
numbers. It turns out that the product of two odd numbers is odd. Say 2n+ 1
and 2m+ 1 are two odd numbers. Observe:

(2n+ 1)(2m+ 1) = 2n(2m+ 1) + (2m+ 1)

= 4nm+ 2n+ 2m+ 1

= 2(2nm+ n+m) + 1

which is odd.
But the product of an even number with any integer is even. Say 2n is an

even number, and k is any integer. Then:

(2n)k = 2(nk)

which is even. We may summarize these results in another table (see Figure 2.3)
At this point we have enough knowledge to see why our rule for determining

parity by looking at the last digit works. In a number written in the place value
system, such as 76103, we can split the number into the ones’ digit, the tens’
digit, hundreds’ digit, and so on. Another way to think about it is, by splitting
off the ones’ digit,

76103 = 3 + 7610× 10

But we know that 10 = 2 × 5 is even, so by the rules covered above, we
know that anything mutliplied by 10 remains even. Then if we add it to an odd
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Number Theory 10

number, we obtain an odd number, but if we add it to an even number, then
we obtain an even number. Therefore, just by looking at the last digit, we can
figure out whether a number is odd or even.

2.2 Divisibility

We will begin today’s topic with a few definitions.
The symbol | means “divides”. If n and m are two numbers, then n divides

m when m÷ n has no remainder; that is, when m mod n = 0. We write this as
n | m.

A number is a factor of another number if it divides that number. For
example, 3 is a factor of 9 because 3 | 9. A number is a multiple of another
number if the other number divides it. For example, 9 is amultiple of 3. Another
word for factor, which we will see later on, is divisor.

We can see that if n and m are integers, then the following conditions are
equivalent:

1. n is a factor of m

2. n divides m

3. m is a multiple of n

4. m mod n = 0

5. There exists integer k such that m = nk

Observe that 1 is a factor of every whole number, and 0 is a multiple of
every whole number.

We also introduce the symbol - for “does not divide”; that is, for n and m
two integers, n - m whenever it is not the case that n | m.

Example 2c. Factors and Multiples

Let a, b, and c be integers such that c = ab. Then

1. a must divide c True False

2. b must be a multiple of c True False

Solution: Since c = a× b, and b is an integer, therefore a | c, so the first

statement is always true .
But there is no requirement that c | b—take a = b = 2 and c = 4, for

example. Here 4 - 2, so the second statement is false .

2.2.1 Finding Factors

One class of problem that we may be interested in solving is to list the factors
for a number. When the number is small, this is easy. For example, listing the
factors of 6 is as simple as trying out all smaller (or equal) positive integers,
and finding that only 1, 2, 3, and 6 divide 6 evenly.
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Note that −1, −2, −3, and −6 are also factors of 6. However, because these
are redundant with the positive factors we found above, we typically only care
about finding the positive factors of a number.

For larger numbers, we may exploit the fact that factors always come in
pairs. If a | c, then there is some number b so that a× b = c. But then we can
just flip the order of the multiplication, and we see that b× a = c and therefore
b | c. Therefore a convenient way to find big factors is to divide the original
number by the smaller factors.

We will revisit this topic, and obtain a faster way to do this type of problem,
in the future.

Example 2d. Positive Factors of 30

Find the first 4 positive factors of 30.

Solution: It is clear that 1 | 30, 2 | 30, and 3 | 30. But since 30 mod 4 = 2,
then 4 - 30. So we check that 30 mod 5 = 0, so 5 | 30. Hence the first four

factors are 1, 2, 3, 5 .

2.2.2 Revisiting Parity

Using our new definitions, we see that the topic we covered last class—even and
odd numbers—is really just the study of numbers that are and aren’t divisible
by 2. Even numbers are the multiples of 2, and all even numbers have 2 as a
factor. Be careful! Note that odd numbers do not necessarily have 3 as a factor
(for example, 5 is not a mutliple of 3), and even numbers might (for example, 6
is a multiple of 3 and is also even.)

2.2.3 Divisibility Rules

Earlier we have already seen rules for divisibility by 2. We have a similar rule
for divisibility by 5. The reason that this rule is correct will be discussed later in
this unit, but please feel free to think about it. To figure out whether a number
is divisible by 5, simply look at the last digit. If it is 0 or 5, then the number is
divisible by 5.

For divisibility by 10, the rule is even simpler. A number is divisible by 10 if
and only if the last digit is 0. A number is divisible by 100 if the last two digits
are 0. (Note that 0 is a bit of a special case, since it only has one digit, but it
is still divisible by 100.)

For divisibility by 3, the rule is a little complicated. A number is divisible
by 3 if and only if the sum of its digits is divisible by 3. For example, 123456 is
divisible by 3, because the sum of digits 1 + 2 + 3 + 4 + 5 + 6 = 21 is.

2.2.4 Transitivity

The transitivity principle of divisiblity says that if a, b, and c are integers, and
if a | b and b | c, then a | c. Let’s do an example. We know that 3 | 12, and
that 12 | 36. Then by transitivity, 3 | 36. Here is a simple exercise that is easily
done using transitivity:
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Example 2e. Multiples of 12 and 3

Does 3 divide every multiple of 12? True False

Solution: Say a is some multiple of 12. By definition, 12 | a. Here we are
using a as a placeholder—it can stand for any multiple of 12.

Since 12÷ 3 = 4R0, we know that 3 | 12. But if 3 | 12 and 12 | a, then
by transitivity, 3 | a. Therefore, the statement that 3 divides every multiple

of 12 is true .

2.3 Review

There is a quiz for this chapter (Quiz 3: Parity and Divisibility). The anticipated
length for the quiz is 15 minutes. Three review questions follow. Quiz questions
will be very similar in nature.

Example 2f. Factor Pairs

Complete the factor pairs.

• 6 = 1× 6

• 6 = 2× 3

• 6 = 3× 2

• 6 = 6× 1

Example 2g. Factors and Multiples

Use the word “factor” or “multiple” to complete each blank.

• 1 is a factor of every whole number.

• 0 is a multiple of every whole number.

• 3 is a factor of 9.

• All even numbers are multiple s of 2.

Example 2h. Divisibility

Circle factors of each number. More than one factor may be circled.

Grade 4 Olympic Math
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• 25 1 2 5 10 100

• 172 1 2 5 10 100

• 1793 1 2 5 10 100

• 2000 1 2 5 10 100

Grade 4 Olympic Math



Chapter 3

Prime Numbers

A prime number is a positive integer that has exactly two positive factors: 1
and itself. We care about prime numbers because they are the basic building
blocks for all other positive integers, a fact which we will look at in more depth
later on.

3.1 Testing for Primality

We can easily check whether small numbers are prime. First, note 1 is not prime,
because it has just one factor. However, 2 is prime, because it has exactly two
factors: 1 and itself.

Example 3a. The First Few Primes

Is each number prime or not prime?

• 2 Prime Not Prime

• 3 Prime Not Prime

• 4 Prime Not Prime

• 5 Prime Not Prime

• 6 Prime Not Prime

• 7 Prime Not Prime

• 8 Prime Not Prime

• 9 Prime Not Prime

• 10 Prime Not Prime

Don’t get caught in the trap that every odd number is prime! 9 = 3 × 3 is
not. Neither are 15, 21, 25, and many others. In fact, as the numbers get bigger
and bigger, prime numbers get rarer and rarer. However, do note that there is
only one even prime: 2.

14
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70

7 10

2 5

70

14

2 7

5

Figure 3.1: Two different factor trees for 70

3.2 Composite Numbers

A composite number is a number that can be written as the product of two
smaller positive numbers. Thus 4 = 2× 2 is composite. It turns out that every
non-prime positive whole number except 1 is composite.

Composite numbers have at least three distinct factors. Usually, they have
at least four (such as 6, which has factors 1, 2, 3, and 6), but there is a spe-
cial category of numbers that have exactly 3. These are the squares of prime
numbers. (Recall that a square is a number multiplied by itself.) For instance,
4 has factors 1, 2, and 4, and 9 has factors 1, 3 and 9. This happens when the
only prime factor of a number is paired with itself.

When numbers get quite large, composite numbers vastly outnumber prime
numbers. Many classes of numbers contain only one prime number and infinitely
many composite numbers. For instance, among the powers of 2 (2, 4, 8, 16, . . . ),
only 2 is prime.

3.3 The Fundamental Theorem of Arithmetic

One of the most important facts about whole numbers, one that forms the basis
for much of number theory, is the Fundamental Theorem of Arithmetic. This
theorem is a result that states that every positive whole number can be factored
uniquely into primes. What does that mean?

If we have a whole number, say, 70, we see that we can write it as 7 × 10.
Furthermore, 10 = 2×5. So we can factor 70 = 7×2×5. Each of these numbers
is now prime, and so we cannot factor this further, except by introducing copies
of 1, which is pointless. (We could always write a number as itself times 1, but
since multiplying by 1 does not do anything, we might as well leave them out.)

But what if we had factored it a different way, first writing 70 = 5 × 14?
Then we notice that 14 = 2 × 7, so we can change to 70 = 5 × 2 × 7. The
important thing is that this is the same factorization as last time, except in a
different order. In fact, no matter, how we factor 70, we will always arrive at
the same prime factorization (with possibly a different order).

One way to quickly determine the prime factorization is to use a factor tree.
We draw the number we want to factor on top, and split it up into two children.
If any child is prime, we leave it be; otherwise, we split that up further into two
children. We repeat this procedure until all leaves are prime (see Figure 3.1 and
Figure 3.2 for examples). The product of these leaves is the prime factorization.

Example 3b. Prime Factorization I

Find the prime factorization for each number.

• 12 = 2× 2× 3
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48

4

2 2

12

2 6

2 3

48

3 16

4

2 2

4

2 2

Figure 3.2: Two different factor trees for 48

• 70 = 2× 5× 7

• 100 = 2× 2× 5× 5

Example 3c. Small Prime Factors I

Find one prime factor for each number. Do not try to find additional
factors.

• 99959386 Factor: 2

• 521976505 Factor: 5

3.3.1 Factoring Large Numbers

As we will see, it may be difficult to factor very large numbers. In fact, much
of modern cryptography, including the popular RSA encryption scheme, relies
on the fact that nobody has yet discovered a fast way to factor large numbers.

First, notice that checking whether large numbers are prime is quite hard
to do on paper. However, it is sometimes easy to see that some numbers are
composite. For example, if a number ends in 0, 2, 4, 5, 6, or 8, then it is
probably composite—the only two exceptions are 2 and 5.

But given a large number, like 8644255723, how do we know whether it is
prime or not? And how do we figure out its prime factorization? One way is to
use trial division—just divide by all numbers starting from 1 until you find one
that leaves no remainder. It turns out 8644255723 = 90907× 95089, which are
both prime numbers and cannot be factored further.

Then how many divisions do we have to do before we found the first number
that works? We had to do 90907 divisions! That’s a lot. If it took us one minute
to do each division on paper, then it would take over two months of continuous
work to find it.

Luckily, there are quicker ways to do factorization, and there are comput-
ers that can do it much faster than humans can. But even computers have
their limits. Modern computers have a very hard time factoring numbers with
thousands of digits. But there is a fast way of checking whether a number is
prime.
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The implication is that it is easy to find two two big prime numbers with a
computer, and it is easy to multiply them, but it takes a long time to reverse
that operation and break the big number back down into its prime factors.

As an interesting note, which we will not explore further in this class, there
are actually infinitely many prime numbers. That means that no matter how
big our prime numbers get, we can always find another bigger prime number.

3.3.2 Applications to Problem Solving

So far in this unit, we have not done so many applications to problems of the
sort typically seen in math contests. However, this does not mean that the Fun-
damental Theorem of Arithmetic is not useful for contest math. Many questions
can be simplified greatly by factorizing numbers into their prime factorizations.
It is even useful for mental arithmetic. We will see some examples below.

Example 3d. Mental Arithmetic

Find, without using a calculator, 1875× 48.

Solution: We compute

1875 = 5× 5× 5× 5× 3

and
48 = 2× 2× 2× 2× 3

so

1875× 48 = 5× 5× 5× 5× 3× 2× 2× 2× 2× 3

= 10× 10× 10× 10× 3× 3

= 90000

Factorizing numbers into primes before multiplying them is a common
technique in mental math.

3.3.3 History

The Fundamental Theorem of Arithmetic is known to be true. But for most
people, it is not obviously true. Why is it that all positive integers can be
broken down uniquely into prime numbers? In mathematics, claims like the
Fundamental Theorem of Arithmetic require proof. That is, we need a convinc-
ing argument that it is true for all numbers. The argument should depend only
on facts that are known and accepted to be true, or facts that also have proofs.
The first known proof for the Fundamental Theorem of Arithmetic was in book
VII (7) of Euclid’s Elements, propositions 30 and 32. This proof is not covered
in the course.

3.4 The Sieve of Eratosthenes

Earlier, we found the first few prime numbers simply by finding factors. This is
unfortunately quite a slow way to find prime numbers. With a few observations,
we can find prime numbers much faster. Firstly, we noted earlier that all factors
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come in pairs. For example, 8 | 56 (i.e. 8 is a factor of 56), so there is some
number that we can multiply with 8 to get 56. This number is 7. We have
8× 7 = 7× 8 = 56.

In the case of a perfect square, a factor could be paired with itself. For
example, 10 | 100, and indeed 10 × 10 = 100, so 10 is paired with itself. But
being paired with itself still counts has being part of a factor pair.

You may have noticed that when we search for factors of numbers, we find the
same factor pair possibly more than once. For instance, suppose we construct
a factor table for 21, trying out all the numbers from 1 to 21. See Figure 3.3
for an example. This is a lot of work! It may seem at first like all the work
is necessary, because we don’t find the last factor, 21, until the last row. But
notice that we have encounted all the factors by the third row: some of them
are just on the right.

Indeed, this is where the idea of pairs comes in. Instead of checking every
number, and try to get every pair of numbers a × b = 21, we could only check
the pairs a × b = 21 where a ≤ b. That is to say, once the left hand number
exceeds the right hand number, then we don’t need to check any more. The
right hand side of Figure 3.3 shows an abbreviated table where we stop after
checking 4. Why 4? Well, 5 × 5 = 25, which is already bigger than 21. So we
know that if 5 did divide 21 (which it does not), then the factor it pairs with
must be less than 5. But then we would have already found it.

This significantly reduces the amount of work we have to do. But is there
an even quicker way? Over 2000 years ago, Eratosthenes of Cyrene devised an
idea. First, notice that you can find all the prime factors, then you can find
all the other factors. If we think of factorizing a number as breaking it down
into the pieces that make it up, then the prime factorization is the most broken
down state. We can recombine the prime factors to create the other factors.

For example, with 21 = 3×7, and this is the prime factorization. We can see
that every factor of 21 is just 3, 7, or some combination. (Think of 1, the special
case, as using no pieces.) See Figure 3.4 for a diagram showing this process.

This means that a good way to factor larger numbers might be to find all the
prime factors first. That is, first find the prime factorization and then combine
the primes to find the other factors. We saw the method of factor trees earlier,
but in general we will need to have a list of prime numbers to do that in a
reasonable amount of time.

Let’s consider the problem of making such a list of prime numbers. Say
we’re interested in all the prime numbers between 2 and 100. An obvious way
to go about making the list is to go through the integers, and decide whether
each is a prime number. We can do that by testing whether it is divisible by
any smaller prime number; if it is composite, then it must have a smaller prime
that divides it. This means that we need to use the list as we make it.

This can take a long time, so let’s consider an example finding just the
prime numbers between 2 and 5 first. The steps for doing this using our current
procedure are:

• Start with 2. It is prime. Our list is [2] right now.

• Now consider 3. We check that 2 - 3, since 3 mod 2 = 1. So 3 is prime.

• Our list is now [2, 3].

• Now consider 4. We check that 2 - 4, since 4 mod 2 = 0. So 4 is not prime.

• Our list is still [2, 3].

• Now consider 5. We check 2 - 5 and 3 - 5. So 5 is prime.
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21 =

1× 21

2× . . .

3× 7

4× . . .

5× . . .

6× . . .

7× 3

8× . . .

9× . . .

10× . . .

11× . . .

12× . . .

13× . . .

14× . . .

15× . . .

16× . . .

17× . . .

18× . . .

19× . . .

20× . . .

21× 1

21 =

1× 21

2× . . .

3× 7

4× . . .

5 stop

Figure 3.3: On the left, a factor table used to find the factors of 21; while this
works, it’s a lot of work, not all necessary. On the right, an abbreviated factor
table that still finds all the factors, but is much less work to draw.

Use 3? Use 7? Factor

1

3

7

3× 7 = 21

Figure 3.4: A table listing all factors of 21 by combining subsets of the prime
numbers
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 3.5: A grid of numbers between 1 and 25

�1 2 3 �4 5

�6 7 �8 �9 ��10

11 ��12 13 ��14 ��15

��16 17 ��18 19 ��20

��21 ��22 23 ��24 ��25

Figure 3.6: A completed Sieve of Eratosthenes for numbers between 1 and 25

• Our list is now [2, 3, 5].

This procedure is quite long and tedious. A better way is given by the Sieve
of Eratosthenes, which involves crossing off all the multiples of each number
we find, because those numbers aren’t prime. The numbers left over must be
prime.

We start with a grid like that in Figure 3.5. Then we do the following steps,
to cross off all the non-prime numbers:

1. Cross off 1. It is not prime.

2. Circle 2, because it is a prime number. Cross off all bigger multiples of 2
(4, 6, 8, . . . ), because they are composite.

3. Circle the smallest number that hasn’t been crossed off. Since it isn’t
divisible by any smaller prime (otherwise, it would have been crossed off),
it must be prime. Now cross off all multiples of the number you just
circled.

4. Repeat the last step until all numbers are crossed off or circled.

After completing these steps, the grid will look like Figure 3.6. The circled
numbers are all the primes. This algorithm is much more efficient than trial
division, because we can cross off multiples, which is easier to do than find
remainders.

3.5 Review
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Example 3e. Small Prime Factors II

Find one prime factor for each number. Do not try to find additional factors.

• 999958 Factor: 2

• 999993 Factor: 3

• 999995 Factor: 5

Example 3f. Prime Factorization II

Find the unique prime factorization of each number.

• 55 5 × 11

• 30 2 × 3 × 5

• 42 2 × 3 × 7

• 24 2 × 2 × 2 × 3
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Chapter 4

Greatest Common Divisor

4.1 Introduction

In this chapter, we will discuss two very important topics that have many appli-
cations: the greatest common divisor, and another similar operation, the least
common multiple.

4.1.1 Greatest Common Divisor

Given two positive integers, we define their GCD (greatest common divisor)
to be the largest positive integer that’s a factor for both those numbers. For
instance, the factors of 24 are 1, 2, 3, 4, 6, 8, 12, 24, and the factors of 36 are
1, 2, 3, 4, 6, 9, 12, 18, 36. The greatest factor that these have in common is 12.
Therefore we denote

gcd(24, 36) = 12

Example 4a. Examples

• gcd(10, 20) = 10

• gcd(15, 25) = 5

• gcd(7, 11) = 1

4.1.2 Least Common Multiple

Similarly, given two positive integers, we define their LCM (least common multi-
ple) to be the smallest positive integer that’s a multiple of both those numbers.
For instance, the positive multiples of 24 are 24, 48, 72, and so on, and the
positive multiples of 36 are 36, 72, 108, and so on. The smallest multiple that
these have in common is 72. Therefore we denote

lcm(24, 36) = 72

An intriguing connection between the GCD and the LCM is given by the
following identity, which we will not justify in this class, but you may see again
in the future:

gcd(a, b)× lcm(a, b) = a× b (4.1)
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Roughly speaking, this identity says that the product of two numbers is the
same as the product of their GCD and their LCM.

4.2 Application to Rational Numbers

The GCD and the LCM have many applications across mathematics. An im-
portant application is to the study of rational numbers, or fractions. Recall
that a fraction is a pair of two integers, the numerator and the denominator.
Additionally, the denominator is not allowed to be zero, because we cannot split
any quantity into zero parts.

Note that a fraction does not have a unique representation as a numerator
and denominator. Two fractions may be equal even if the numerator and the
denominators differ. For instance, the fraction 1

2 is equal to fractions 2
4 ,

3
6 , and

so on.
We may simplify a fraction by writing it as an equivalent fraction with

least possible (positive) denominator. Simplifying fractions makes it easy to
determine whether two fractions are equivalent, and also makes fractions easier
to work with. There exists a simple algorithm to simplify a fraction. Given n

m ,

compute d = gcd(n,m), and then n÷d
m÷d is the simplest form.

Example 4b. Simplify Fraction

Simplify. Note that the fraction may possibly already be in simplest form.

• 20
15 = 4

3

• 24
36 = 2

3

• 7
13 = 7

13

When we add or subtract fractions, it helps often to write the fractions with
equal denominator. To select a compatible denominator, we may use the least
common multiple. For example, to add a

b + c
d , we may compute ` = lcm(b, d)

and then compute

a

b
+

c

d
=

a`÷ b

`
+

c`÷ d

`

=
a`÷ b+ c`÷ d

`

which then we may simplify with the algorithm described above.

Example 4c. Adding and Subtracting Fractions

Add or subtract. Then simplify.

• 1
2 + 1

3 = 5
6

• 3
4 + 1

6 = 11
12
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• 23
36 − 11

24 = 13
36

4.3 Euclidean Algorithm

An algorithm is a “step-by-step procedure for performing a calculation according
to well-defined rules” (Wikipedia).

In this lesson we will cover a useful algorithm that allows us to find the
greatest common divisor of two large numbers. This algorithm has been known
for thousands of years. It was discovered by the Ancient Greeks, and is named
after Euclid, one of the most famous mathematicians in history.

This algorithm is based on the fact that the greatest common denominator
does not change if the smaller number is subtracted from the larger one. That
is, gcd(a, b) = gcd(a, b− a) for all positive integers a and b, with b > a. Proving
this fact is beyond the scope of this course. However, we will look at an example.

Consider gcd(8, 12) = 4. If we subtract 8 from 12, we get gcd(8, 4) = 4. If
we subtract now 4 from 8, we get gcd(4, 4) = 4. We notice that the GCD is
unchanged despite these subtractions.

To avoid subtracting potentially many times, we can change the repeated
subtraction into a remainder operation. Thus we arrive at the most commonly
stated version of the Euclidean algorithm:

4.3.1 The Euclidean Algorithm

To find the Greatest Common Divisor of two positive whole numbers, a and b:

1. If a = 0, then terminate. The greatest common divisor is b.

2. Otherwise, apply the Euclidean Algorithm to find the GCD of b mod a
and a. That is, gcd(a, b) = gcd(b mod a, a).

4.3.2 Properties

This algorithm is an example of a recursive algorithm. More specifically, it is
a “tail recursive” algorithm. That means that the algorithm either produces a
result, or it requires running the algorithm another time on simpler numbers.
We may need to run the Euclidean algorithm several times on progressively
simpler numbers before finishing the computation.

Although the Euclidean algorithm may take some time to compute by hand,
it is very easy for a computer to do. In fact, the algorithm is so efficient that
computers can easily calculate the greatest common divisors of numbers with
thousands of digits, in a matter of milliseconds!

4.3.3 Examples

Here is a quick example of using the Euclidean algorithm to compute the greatest
common divisor of medium-sized numbers:

Example 4d. GCD of Two Numbers
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Compute gcd(60, 84) = 12 .

Solution:

gcd(60, 84) = gcd(84 mod 60, 60)

= gcd(24, 60)

= gcd(60 mod 24, 24)

= gcd(12, 24)

= gcd(24 mod 12, 12)

= gcd(0, 12)

= 12

We may alternatively seek to find the GCD of multiple (more than two)
numbers. This means the largest number that is a divisor of all the numbers
we’re interested in. We can do this by finding the GCD of the first two, and
then finding the GCD of that number and the third, and so on. That is, we use
the formula

gcd(a, b, c, d, . . . ) = gcd(gcd(a, b), c, d, . . . )

This computation may require several long and tedious applications of the
Euclidean algorithm. Luckily, in practice, when GCDs for large numbers must
be computed, computers can typically be used. You will not be required to do
problems of this sort on your homework or quizzes.

Example 4e. GCD of Three Numbers

Compute gcd(3636, 3948, 4056) = 12 .
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Solution:

gcd(3636, 3948, 4056) = gcd(gcd(3636, 3948), 4056)

= gcd(gcd(3948 mod 3636, 3636), 4056)

= gcd(gcd(312, 3636), 4056)

= gcd(gcd(3636 mod 312, 312), 4056)

= gcd(gcd(204, 312), 4056)

= gcd(gcd(312 mod 204, 204), 4056)

= gcd(gcd(108, 204), 4056)

= gcd(gcd(204 mod 108, 108), 4056)

= gcd(gcd(96, 108), 4056)

= gcd(gcd(108 mod 96, 96), 4056)

= gcd(gcd(12, 96), 4056)

= gcd(gcd(96 mod 12, 12), 4056)

= gcd(gcd(0, 12), 4056)

= gcd(12, 4056)

= gcd(4056 mod 12, 12)

= gcd(0, 12)

= 12

We may cover a few assorted problems to reinforce your ability to compute
the GCD using the Euclidean algorithm. However, in general, this computation
is not difficult, but is brainless and long, and I do not recommend you do many
of these problems for practice.

Example 4f. Assorted GCD Problems

Use the Euclidean Algorithm to compute the following:

• gcd(12, 28) = 4

• gcd(147, 392) = 49

• gcd(319, 920) = 1

• gcd(2635, 4515) = 5

• gcd(12936, 25256) = 616

• gcd(399, 1533, 1659, 2016) = 1

4.3.4 Negative Numbers

We can define the greatest common divisor for negative integers also, but we
must be careful. Since 2÷−2 and 2÷ 0, we have that gcd(0,−2 = 2, a positive
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gcd(a, b) = if a == 0

abs(b)

else

gcd(rem(b, a), a)

end

Figure 4.1: An implementation of the Euclidean algorithm in Julia

number. The easiest way to find the GCD of integers that might be negative is
to take an absolute value. We write

|n| =

{
n if n ≥ 0

−n otherwise
(4.2)

and call this the absolute value of n. For instance, |2| = 2 and | − 2| = 2.
Then the GCD of integers that might be negative can be computed as we did
above, but making sure to take an absolute value where appropriate.

4.3.5 Computer Algorithm

One advantage of an algorithm is that we can run them on a computer. For your
interest, in Figure 4.1 we have an implementation of the Euclidean algorithm
in the Julia programming language. In the Julia language, abs represents the
absolute value, and rem represents the remainder.

As mentioned earlier, the Euclidean algorithm is quite efficient. But in
fact, there are even more efficient algorithms for finding the GCD of two large
numbers on a computer. Computers can find the GCD of two huge numbers
almost instantly—even if the numbers involved have thousands of digits.
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Chapter 5

Modular Arithmetic

The final chapter in this unit will be brief, and you will not be quizzed on the
material. However, the content of this chapter will certainly be interesting.

In earlier chapters we discussed briefly remainders and some applications.
In this chapter, we will develop new powerful techniques to simplify the solution
to these problems.

5.1 Generalizing Parity

When we talked about even and odd numbers, we came up with rules about the
result of adding, subtracting, and multiplying even and odd numbers. We can
come up with similar strategies for divisibility by any number, not just 2. For
the purposes of discussing this with greater ease, we will consider 7 as our base.

All positive integers (in fact, all integers, including zero and negative ones)
can be categorized into 7 distinct buckets based on their remainder when divided
by 7. Let us call these buckets [0], [1], [2], [3], [4], [5], and [6]. In the following
table we have categorized the numbers from 0 to 30 into these buckets:

[0] 0 7 14 21 28

[1] 1 8 15 22 29

[2] 2 9 16 23 30

[3] 3 10 17 24

[4] 4 11 18 25

[5] 5 12 19 26

[6] 6 13 20 27

We can see a few patterns in the above table. When we add 1 to a number,
we move to the next bucket. But [6] has no next bucket, so what happens when
we add 1 to a number in bucket [6]? We move to bucket [0]! In some sense, these
buckets form a sort of cycle. After we reach the last bucket, we loop around
and return to the first bucket (Figure 5.1).

This behaviour should make sense when starting at buckets [0] to [5]. But
for bucket [6], why is it that we move to bucket [0] by adding one more? We can
find the solution using algebra, just like how we did when talking about parity.
Any number in bucket [6] looks like 7n + 6 for some integer n. If we add 1 to
this,

7n+ 6 + 1 = 7n+ 7 = 7(n+ 1)
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[0]

[1]
[2]

[3]

[4]

[5]
[6]

Figure 5.1: When we add 1 to a number in a bucket, we move to the next bucket
in this diagram.

and we can see that this is a multiple of 7, and so belongs in bucket [0].
We now consider what happens if we add 2 to a number. In which bucket

would the new number be in? This is the same as adding 1 twice. So, for
example, [0] goes to [2], [4] goes to [6], [5] goes to [0] and [6] goes to [1]. Again,
we are just moving around in circles. It is similar to addition on the number
line, but instead of going in a line, we are going in a cycle.

The process of addition is moving numbers from one remainder bucket to
the next several times. What happens if we add 7? Well, we would have gone
one whole cycle around, and so our result should be in the same bucket. And
indeed, that is what we would expect, since adding 7 should not change the
remainder when dividing by 7.

The same goes for any multiple of 7. If we add 21, we would go around one
whole cycle 3 times, and then arrive back where we started. For bigger numbers
that are not multiples of 7, we can think of the addition as moving around the
whole cycle several times, then moving some extra steps. How many extra steps
do we move? Why, the remainder when divided by 7, of course.

To recap, we have devised a system where we can predict the remainder of
a sum when divided by 7, knowing just the remainders of the two summands
when divided by 7. We simply start at the bucket for the first number and
advance a number of buckets in the cycle equal to the remainder of the second
number when divided by 7. We introduce the following notation:

[1] + [2] = [3]

to mean that the sum of a number in bucket [1] and a number in bucket [2] is
a number in bucket [3].

We can return to algebra to provide a justification for this behaviour. Say
n mod 7 = i, and m mod 7 = j. Then let n = 7k + i and m = 7` + j. We see
that

(n+m) mod 7 = (7k + i+ 7`+ j) mod 7

= (7(k + `) + i+ j) mod 7

= (i+ j) mod 7

which is the same as saying that the remainder of the sum of two numbers when
divided by 7 is the same as the remainder of the sum of the remainders when
divided by 7. In other words, the bucket of the result is determined only by the
buckets of the summands.
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By now we have come up with a generalization of the concept of parity (for
divisibility by 2) to divisibility by 7. Instead of categorizing numbers into even
and odd numbers, we categorize them into the 7 buckets depending on their
remainder when divided by 7. But we could have chosen any positive integer to
start with, not just 7. By using the same techniques we applied above, we can
create a new way of analyzing numbers using any positive integer as our base.

5.2 Introducing Multiplication

For simplicity, we’ll continue to use 7 as our base, but keep in mind that the
interesting results we will notice are valid in other bases also. Above, we saw
the important fact that the remainder of the sum of two numbers is the same as
the remainder of the sum of the remainders of two numbers. There is a similar
fact for multiplication. Indeed,

ab mod 7 = (a mod 7)(b mod 7) mod 7

That is, instead of multiplying two numbers and then taking the remainder of
the product, we can instead multiply their remainders and take the remainder
of that. While above we gave an algebraic explanation for the sum of two
numbers, for the sake of time we will not do that for the product. But a similar
algebraic explanation is possible, and if you are interested, you may try to devise
it yourself.

We are able to solve advanced problems easily by applying the techniques
shown above. Let us consider, for example, the following problems:

Example 5a. A Million Days

Today is Sunday. 1000 days later, it will be Saturday. 1000000 days
later, what day will it be?

Solution:
The question tells us that 1000 days later, it will be Saturday. Since

Saturday is 6 days past Sunday, we know that 1000 mod 7 = 6.
We need to compute 1000000 mod 7. We can use the technique devel-

oped above to simplify:

1000000 mod 7 = (1000× 1000) mod 7

= ((1000 mod 7)× (1000 mod 7)) mod 7

= (6× 6) mod 7

= 36 mod 7

= 1

so after 1000000 days, the day of the week will be 1 past Sunday, hence

Monday .

Example 5b. A Large Power of 2

Find 232 mod 7.
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Solution:
We could find the product, but that would take a long time. Since 16 is

a power of 2, it may be useful to consider the remainders of 21, 22, 24, 28,
216, and then finally 232.

First, note that 2 mod 7 = 2. Then note 22 mod 7 = 4 mod 7 = 4.
Next, note that

24 mod 7 = (2× 2× 2× 2) mod 7

= 16 mod 7

= 2

and so far, all the calculations have been short and easy.
For 28 mod 7, instead of calculating the product, we could apply the

above result:

28 mod 7 = (2× 2× · · · × 2︸ ︷︷ ︸
8 twos

) mod 7

= (2× 2× 2× 2)(2× 2× 2× 2) mod 7

= 16× 16 mod 7

= (16 mod 7)(16 mod 7) mod 7

= 2× 2 mod 7

= 4 mod 7

= 4

Next, for 216 mod 7, we do the same thing again:

216 mod 7 = (2× 2× · · · × 2︸ ︷︷ ︸
16 twos

) mod 7

= (2× 2× · · · × 2︸ ︷︷ ︸
8 twos

)(2× 2× · · · × 2︸ ︷︷ ︸
8 twos

) mod 7

= 28 × 28 mod 7

= (28 mod 7)(28 mod 7) mod 7

= 4× 4 mod 7

= 16 mod 7

= 2

And finally, one more time for 232 mod 7:

232 mod 7 = (2× 2× · · · × 2︸ ︷︷ ︸
32 twos

) mod 7

= (2× 2× · · · × 2︸ ︷︷ ︸
16 twos

)(2× 2× · · · × 2︸ ︷︷ ︸
16 twos

) mod 7

= 216 × 216 mod 7

= (216 mod 7)(216 mod 7) mod 7

= 2× 2 mod 7

= 4 mod 7

= 4
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5.3 Notation

The kind of computation we were doing above is known as modular arithmetic.
Sometimes it is convenient to use specialized notation to describe operations.
Now we will take look at the commonly used notation, and how it can be used
to solve problems.

First, we introduce the concept that two numbers are congruent modulo
some base k if they have the same remainder when divided by k. For example,
17 and 10 are congruent modulo 7, because

17 mod 7 = 3 = 10 mod 7

.
We can write this as:

17 ≡ 10 (mod 7)

or alternatively without the brackets, but keeping the additional space, as

17 ≡ 10 mod 7

By working with congruences, we can solve complex problems in relatively
few lines of work. For instance, consider the following.

Example 5c. Huge Number, Small Remainder

Define 10! = 10× 9× 8× · · · × 1. Find 10! mod 72.

Solution: We see that

10! ≡ 10× 9× 8× · · · × 1 mod 72

≡ 9× 8× 10× 7× 6× · · · × 1 mod 72

≡ 72× 10× 7! mod 72

≡ 0× 10× 7! mod 72

≡ 0 mod 72

so 10! mod 72 = 0 .

Example 5d. Units Digit

Find the ones’ digit of the following sum:

40 + 7874 + 648 + 56 + 338

Solution: We seek

(40 + 7874 + 648 + 56 + 338) mod 10

It is straightforward to compute this:

40 + 7874 + 648 + 56 + 338 ≡ 0 + 4 + 8 + 6 + 8

≡ 26

≡ 6 (mod 10)

and hence the ones’ digit of the desired sum is 6 .
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1
2

3

4
567

8

9

10
11 12

Figure 5.2: A 12-hour clock displaying the time 1:00.

Example 5e. Clock Arithmetic

A 12-hour analog clock (which are increasingly rare nowadays) is a time-
keeping device numbered from 1 to 12 (see Figure 5.2). There are two
hands. The longer one is the minute hand, which measures minutes, and
the shorter one is the hour hand, which measures hours. Each hour, the hour
hand of the clock moves clockwise (that is, up one number) by one labelled
segment. Every 12 hours, the clock returns to its original orientation. For
the purposes of this question, we’ll ignore the minute hand and focus only
on the hour hand.

If a clock’s hour hand is pointing to the 5 right now, to where was it
pointing 13× 29 hours ago?

Solution: We seek 5− 13× 29 mod 12. It is straightforward to calculate
this with modular arithmetic:

5− 13× 29 ≡ 5− 1× 5

≡ 5− 5

≡ 0 mod 12

Of course, there is no 0 on the clock—in its place is 12 , which was
where the hour hand was pointing.

5.4 Further Study

We do not have time to further discuss modular arithmetic in this course. But
this subject is very powerful, and you will see it again and again in the future.
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Glossary

additive inverse the opposite of a number on the number line; for a the ad-
ditive inverse is denoted −a; it is always the case that a + (−a) = 0.
3

algorithm step-by-step procedure for performing a calculation according to
well-defined rules (Wikipedia). 20, 24

equivalent two statements are equivalent when they occur in exactly the same
situations; for example, being even and being divisible by 2 are equivalent.
10

even a property of numbers divisible by 2; m is even whenever m = 2n for
some integer n. 7

implementation an algorithm that has been realized in some programming
language and can be executed by a computer. 27

integer positive or negative whole number, or 0; for example, −8, 2000. 3

multiplicand the number that is being multiplied; for instance, in 2 × 3 = 6,
the multiplicand is 2. 5

multiplier the factor to multiply a number by; for instance, in 2× 3 = 6, the
multiplier is 3. 5

odd a property of numbers not divisible by 2; m is odd whenever there is no
integer n for which m = 2n. 7

parity decribes whether an integer is even or odd. 7

product the result of a multiplication; for instance, in 2× 3 = 6, the product
is 6. 5

programming language a structured grammar and syntax written by and
understandable by humans but for the purpose of execution by a machine.
27

summand something which is being added; for instance, in 1 + 2 = 3, the two
summands are 1 and 2. 29

transitivity the property of certain relations that specifies if an element a is
related to b, and the element b is related to c, then a is similarly related
to c. 11
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